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In this paper the coherent structure in the similarity region of the turbulent planar
jet is examined experimentally by application of the proper orthogonal decompo-
sition (POD). In particular, twin cross-stream rakes of X-wire probes are used to
take cross-spectral measurements with different spanwise separations between the
rakes and at several locations throughout the similarity region. The resulting POD
spatial eigenfunctions for each of the three velocity components depend on cross-
stream spatial coordinate, Strouhal number, and spanwise wavenumber. Correspond-
ing eigenvalue distributions are obtained in Strouhal number–spanwise wavenumber
space. Eigenvalue convergence is demonstrated to be rapid. When properly scaled
the eigenfunctions and eigenvalues are shown to exhibit self-similarity though the
streamwise location at which this commences depends on the particular velocity
component. The results suggest that the flow supports a planar structure aligned
in the spanwise direction as well as an essentially three-dimensional structure with
asymmetrical shape in the cross-stream direction and pseudo-periodically distributed
in the spanwise direction. Comparison of the single- and dual-rake implementations
of the POD presented in this paper demonstrate that measurements confined to a
single plane are incapable of properly extracting the planar modes. Rather, the single-
rake implementation results in modes that appear to be a weighted sum of modes
corresponding to different spanwise wavenumbers.

1. Introduction
In this paper the large-scale coherent structure in the similarity region of the planar

turbulent jet is experimentally investigated by application of the proper orthogonal
decomposition (POD). This work is focused upon the extraction and characterization
of the POD eigenfunctions and associated eigenvalues and also addresses issues
regarding their self-similarity. For our purpose in this paper, we consider a summation
of the most energetic POD modes as synonymous with the term ‘coherent structure’.
In a follow-on paper, Part 2 (Gordeyev & Thomas 2000), we use a continuous
wavelet transform in conjunction with the POD eigenmodes reported here to recover
the instantaneous dynamics of the coherent structure. We regard this study as a first
step in a longer term goal of developing a dynamical-system-based model of the
planar turbulent jet flow field.

There are several reasons why we chose to examine the turbulent planar jet. It is
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obvious that jet flows are technologically important in a very wide variety of applica-
tions. Further, the simple geometry and boundary conditions of the planar turbulent
jet (in comparison with low-aspect-ratio rectangular, elliptic or even axisymmetric
jets) make it attractive for fundamental investigations into turbulent flow structure.
Finally, based upon previous experimental investigations to be described below, the
similarity region of the planar turbulent jet has suggested the presence of large-scale
organized motions. The evidence comes from two-point correlation measurements and
conditional sampling techniques; certainly visualization by injection of a tracer reveals
no evidence of underlying coherent structure in this fully turbulent flow. Although the
self-similar axisymmetric jet has also shown evidence of large-scale coherent struc-
ture (see Tso & Hussain 1989), evidence suggests the structure in the planar jet is
more well defined (or readily apparent). These factors taken in combination make
the planar jet similarity region an attractive choice for the application of the proper
orthogonal decomposition. Although the POD has been applied to the near field of
the axisymmetric turbulent jet and the planar turbulent mixing layer (these studies
are reviewed later in this section), to the authors’ knowledge, this represents the first
implementation of the POD in the planar jet flow field.

In this section of the paper, background material is presented which motivates the
study and specific objectives of the experimental work are stated. Also presented is
a brief review of previous studies focused on characterizing the turbulent planar jet
similarity region as well as previous studies of jets and mixing layers that have utilized
the POD.

1.1. Background, motivation and objectives

The concept of dynamically significant coherent vortical structures in turbulent flow
has been with us for over fifty years. The term ‘dynamically significant’ implies
that the coherent structures are expected to play important roles in processes such
as scalar and momentum transport, chemical mixing and noise generation. Despite
this generally acknowledged importance, the routine use of the coherent structure
concept in turbulence modelling and flow control strategies has not yet been realized.
In fact, the authors are unaware of any turbulence model in routine use which
explicitly utilizes coherent structure dynamics. If one agrees that coherent structures
are of dynamical importance to turbulent flow then it follows that they should be
incorporated into turbulence modelling schemes, at least in some from.

Several experimental techniques have been developed for the extraction of the
coherent structure from turbulent shear flows and these are reviewed by Bonnet
& Delville (1996). Such techniques may be broadly classified as ‘conditional’ or
‘non-conditional’. Conditional techniques involve sampling the flow only during those
intervals of time that satisfy some predetermined criterion that is deemed dynamically
significant and is related to the presence of the coherent structure that is sought. One
drawback of these techniques is a lack of objectivity in the sense that one must
have some predetermined idea regarding the structural topology in order to set the
sampling criterion. In contrast, the proper orthogonal decomposition (POD) proposed
by Lumley (1967) for investigation of the structure of inhomogeneous turbulent shear
flows is an example of a non-conditional technique which is based on the two-point
correlation tensor. The mathematical background to the POD is the Karhunen–
Loève expansion as described in Karhunen (1946) and Loève (1955). The analysis
of turbulent flow via the POD is the subject of a recent comprehensive review by
Berkooz, Holmes & Lumley (1993) and the book by Holmes, Lumley & Berkooz
(1996).
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In an experimental context, the POD objectively extracts a complete set of spatial
eigenfunctions (i.e. ‘modes’) from the measured second-order cross-correlation (or
cross-spectral) matrix. The extracted modes serve as a set of optimal basis functions
for expansion of the flow. The resulting expansion is optimal in the sense that
convergence is more rapid than for any other possible basis. That is, the projection
of the POD modes on the velocity field is maximized. It is generally recognized that
the empirical eigenfunctions extracted by POD are intimately related to the coherent
structure although the exact relationship is debated. For example, it was noted by
Lumley (1981) that the first POD mode represents the coherent structure only if it
contains a dominant percentage of the fluctuation energy. In other cases, POD modes
give an optimal basis for flow decomposition but may have little to do with the
physical shape of the underlying coherent structure. We choose to compromise and
consider a summation of the most energetic POD modes as the large-scale coherent
structure.

In order to obtain dynamical information regarding the coherent structure the
empirically determined basis functions can be projected onto instantaneous realiza-
tions of the flow field. This allows the extraction of temporal phase coefficients for
each of the modes that embodies their temporal behaviour. In order to preserve
phase information (and thereby realize the full potential of this technique), rakes or
meshes containing multiple probes (so-called ‘multipoint measurements’) are required.
A comprehensive review of multipoint measurement techniques for turbulent flows
and associated sampling requirements is presented by Glauser & George (1992).

Galerkin projection of a truncated subset of dominant POD modes onto the
governing equations for the flow (i.e. the appropriately simplified version of the
Navier–Stokes equations) provides a finite system of ODEs that one hopes will
describe the essential physics of the flow. The influence of the truncated modes is
typically modelled as a dissipative term that acts on the more energetic scales. The
finite system of ODEs is solved to yield the temporal coefficients of the spatial POD
modes. This provides the modelled flow field dynamics. Such an approach is attractive
in that the essential dynamical mechanisms can be captured and implemented within
the context of the well-developed mathematical techniques of dynamical systems and
bifurcation theory. An excellent example of this approach is the work by Aubry et
al. (1988) who successfully utilized the experimental POD eigenfunctions of Herzog
(1986) to create a dynamical systems model of the near-wall region of a turbulent
boundary layer. Using Galerkin projection of the experimentally determined POD
modes onto the Navier–Stokes equation and performing suitable truncation, the
model was found to simulate dynamical behaviour of turbulent boundary layers like
the formation of streamwise rolls as well as intermittent ejection and burst-like events.
A more recent, yet similar, pioneering effort to formulate a dynamical system model
of the plane turbulent mixing layer is reported by Ukeiley & Glauser (1995).

Another unconditional extraction technique that is closely related to the POD is
Linear Stochastic Estimation (LSE), Adrian (1977, 1979). LSE, like the POD, uses
the cross-correlation matrix to extract structure from the flow. In Breteton (1992) it
is shown that LSE can be treated as a weighted sum of an infinite number of POD
modes. Therefore LSE provides a representation of the coherent structure in terms of
a single characteristic flow pattern.

A primary objective of this study is to characterize the coherent structure in the
similarity region of the planar turbulent jet via the POD. We seek to experimentally
extract the POD eigenfunctions and eigenvalues. Particular attention is focused upon
whether the POD modes and associated eigenvalues exhibit self-similar behaviour with
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suitable scaling. Our interest in the turbulent plane jet is motivated, in part, by previous
experimental studies that have suggested the existence of coherent structures in the
similarity region. In order that the results of this investigation may be interpreted
within the proper framework, these studies are next briefly described.

1.2. Previous studies of coherent structure in the planar turbulent jet similarity region

One of the first indications of large-scale structure in the plane turbulent jet was the
‘jet flapping phenomenon’ first reported by Goldschmitd & Bradshaw (1973) and later
by Everitt & Robins (1978) and Cervantes & Goldschmidt (1981). This involved the
observation of negative correlation between streamwise velocity fluctuations measured
simultaneously by hot-wire probes placed on opposite sides of the jet centreline. The
term ‘flapping’ is actually a misnomer which stems from early interpretations of this
phenomenon in which it was suggested that the jet flaps much as a flag does. A lateral
oscillation of the mean velocity profile was proposed as the cause of the negative
time-average correlation. In contrast, Oler & Goldschmidt (1982) suggested that such
correlation measurements are consistent with the presence of large-scale coherent
structures in the similarity region of the planar jet in the form of a self-preserving
antisymmetric array of counter-rotating spanwise vortices. Correlation measurements
by Antonia et al. (1983) support such an antisymmetric structural array concept and
showed that the apparent flapping could indeed be explained in terms of the passage
of vortical structures past the fixed probe pair and was not associated with bulk
lateral displacement of the jet. Antonia et al. (1983) also noted that the existence of
an antisymmetric structural pattern was not in conflict with the earlier observations
of both Gutmark & Wygnanski (1976) and Moum, Kawall & Keffer (1983) which
showed the independent, three-dimensional random motion of the turbulent/non-
turbulent interface on opposite sides of the jet.

Detailed iso-correlation contour maps based on both streamwise and lateral velocity
fluctuations as obtained in different jet facilities by Mumford (1982), Antonia et
al. (1986) and Thomas & Brehob (1986) exhibit a remarkable likeness and appear
consistent with the existence of a large-scale structural array in the planar jet similarity
region. The study by Antonia et al. (1986) was performed in a heated jet and
the existence of laterally coherent temperature fronts was used as the basis for a
conditional sampling scheme. The resulting coherent structure topology inferred from
this method suggested an antisymmetric structural array. The temperature fronts were
found to be associated with the diverging separatrix connecting adjacent structures
on the same side of the jet. The contribution of the coherent and random motions to
momentum and heat transport were found to be comparable.

Mumford (1982) used an iterative pattern recognition technique in order to in-
vestigate the topology of the large-scale structure in the turbulent plane jet. An
initial structural template, whose form was motivated by conventional correlation
measurements, was convolved with experimental realizations of the flow and subse-
quently modified as required by an optimization constraint until convergence was
reached. The results suggested the existence of multiple roller-like structures whose
axes extend in either the direction of mean flow homogeneity or in the direction of
strain associated with the mean velocity gradient. The existence of multiple structural
forms in the flow was suggested by Antonia et al. (1983) and Thomas & Brehob
(1986) to account for the limited spanwise integral macroscales in the similarity
region.

Space–time correlation functions formed between streamswise or lateral component
velocity fluctuations measured simultaneously on opposite sides of the planar jet are
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found to be quasi-periodic. As such, a local time scale, τc, may be defined as the
average time delay between successive correlation function maxima or minima. Studies
by Cervantes & Goldschmidt (1981), Antonia et al. (1983), Thomas & Goldschmidt
(1986) and Thomas & Brehob (1986) in different test rigs all exhibit the same constant
Strouhal number,

b

τcUM

= 0.1, (1.1)

where b is the local jet mean velocity half-width and UM is the local jet centreline
velocity. This suggests that the underlying large-scale component of the flow scales in
accord with the requirements for global flow similarity, i.e. that τc ∼ x3/2, where x is
the streamwise spatial coordinate. More recent theoretical work performed by Ewing
(1995) has shown that the equations governing the propagation of the two-point
velocity correlation tensor in the planar jet admit self-similar solutions.

The convective velocity of the large-scale structural array has been estimated by
Goldschmidt, Young & Ott (1981), Antonia et al. (1983) and Thomas & Brehob
(1986) using a variety of two-point measurement techniques. These studies are in
general agreement, suggesting that the large-scale structural array propagates at
approximately 60% of the local centreline mean velocity.

Thomas & Goldschmidt (1986) considered the development of coherent structures
throughout both the initial, interaction and similarity regions of the planar jet. The
structures were noted to form and interact symmetrically in the transitional jet shear
layers prior to the end of the potential core. Spanwise integral macroscales showed
that the structures exhibit substantial two-dimensionality in the initial region. When
the shear layers merged beyond the jet potential core, a restructuring of the flow
was observed to occur which led to a loss in spanwise two-dimensionality on average
and the formation of the self-preserving antisymmetric structural pattern described
above. Antonia et al. (1983) also found that structures initially formed and interacted
symmetrically in the initial region, with the shear layer interaction near the tip of
the jet core triggering the formation and apparent dominance of the antisymmetric
structural pattern downstream. The planar jet interaction region has been the focus of
detailed studies by Weir, Wood & Bradshaw (1981) and Browne, Antonia & Chambers
(1984). The latter study characterized the redistribution of turbulence quantities in the
interaction region of the plane jet as ‘dramatic’ with a complex and violent interaction
between initially symmetric jet shear layer vortices noted.

Although many details regarding the coherent structure’s topology, origin, evolu-
tion, mutual interaction and role in the flow field dynamics are still unclear, there
can be little doubt from the studies cited above that a significant coherent structure
resides in the planar jet similarity region. Further, this structure appears to develop
downstream of the shear layer interaction near the tip of the jet core. The resulting
structural topology may well be complex since studies have suggested rollers aligned
in both the spanwise direction and the direction of strain associated with the mean
velocity profile.

1.3. Previous applications of the POD in jet and mixing layer flows

The POD was applied in the near field of a high Reynolds number axisymmetric
jet shear layer in a study reported by Glauser (1987), Glauser & George (1989).
This work demonstrated that the first POD eigenmode contained 40% of the kinetic
energy while the first three eigenmodes accounted for approximately 80%. Based
upon the POD results, a model for turbulence production in the axisymmetric shear
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layer was developed which involves the interaction between two adjacent vortex ring
structures shed from the nozzle lip. In a more recent study, Citrinniti (1996) revisited
the axisymmetric jet shear layer at a fixed location 3 diameters downstream of the
nozzle exit using an impressive polar array of 138 straight wire probes. The array was
used to acquire instantaneous realizations of the flow in the (r, θ)-plane onto which
the orthogonal eigenfunction basis was projected in order to obtain the temporal
dynamics of the flow field. In general, the resulting dynamics were found consistent
with those suggested by Glauser (1987).

A novel application of the POD was recently reported by Arndt, Long & Glauser
(1997) who applied the technique to investigate the unsteady pressure field surrounding
an axisymmetric jet. Since pressure is a scalar, there is a consequent simplification in
the required measurements over those that involve the vector velocity field. Unlike
most studies of free shear flows that employ the POD, the streamwise direction
was considered inhomogeneous with the resulting eigenfunctions explicitly dependent
on the streamwise coordinate. The shot-noise decomposition was used to define
characteristic dynamic events that were found to involve mergings of both two and
three vortices.

The application of the POD to investigate coherent structure in the planar mixing
layer is the topic of works by Delville, Bellin & Bonnet (1990), Delville (1993, 1994),
Ukeiley & Glauser (1995), Bonnet & Delville (1996), and Delville et al. (1999). In the
work by Delville et al. (1999) it was found that 70% of the mean-square fluctuation
energy was contained within the first three eigenmodes. The studies also contrasted
the results from scalar and vectorial applications of the POD. Using twin rakes of
X-wires, the large-scale structure in the asymptotic region of the planar mixing layer
was investigated by Ukeiley & Glauser (1995). The measurements were performed at
x/δω = 21.7, where x is the streamwise coordinate and δω is the vorticity thickness.
This study is of particular relevance to the work reported here since the geometric
similarity between the planar mixing layer and planar jet (at least at a superficial
level) warrants a similar experimental approach in implementing the POD. Ukeiley &
Glauser (1995) found that the energy in the POD modes rapidly converges, with 49%
contained in the first mode. The first mode exhibited evidence of both streamwise and
spanwise oriented vortices. The Galerkin method was used to project the empirical
basis functions on the Navier–Stokes equations thereby providing a truncated system
of ODEs for the temporal coefficients which were examined within the context of
dynamical systems theory.

1.4. Objectives and organization

In the following sections of this paper we present the results of an experimental
investigation aimed at extracting the spatial POD eigenfunctions and associated
eigenvalues in the planar turbulent jet similarity region. Motivated by the theoretical
work of Ewing (1995), we investigate whether the POD modes exhibit self-similarity.
Strictly speaking, the results of Ewing (1995) are a necessary but not sufficient
condition for self-similarity of the POD modes. The resulting structure inferred from
our experiments will be discussed as are the possibilities of implementing the results
in constructing a dynamical model of the planar jet similarity region. In Part 2 a
continuous wavelet transform method is used in conjunction with the spatial POD
modes described here to obtain the instantaneous topology and dynamics of the
coherent structure in the jet similarity region.

The following section describes the planar jet flow field facility. This section also
contains a detailed description of the experimental implementation of the POD. The
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Figure 1. Schematic of the turbulent planar jet flow field facility.

experimental results are summarized and arguments related to similarity scaling of
the eigenvalues and eigenfunctions are presented in § 3. The paper concludes with a
discussion regarding the implications of the experimental results in § 4.

2. Description of the experiment
2.1. Experimental facility and instrumentation

All the experiments were conducted in the planar jet flow field facility located at the
Hessert Center for Aerospace Research at the University of Notre Dame. A schematic
of the jet flow field facility is shown in figure 1. The flow is driven by a centrifugal
blower that supplies air to a cubic plenum chamber with dimensions of 1.2 m per
side. Inside the plenum the air is forced to diffuse through a large layer of porous
fibreglass insulation material which serves to both filter the air and decouple the flow
from any blower pulsation. After leaving the plenum, the air enters a rectangular flow
conditioning duct that leads to the nozzle assembly. The duct contains a section of
honeycomb flow straighteners and a series of turbulence-reducing screens of various
mesh sizes. The jet is formed by a two-dimensional nozzle contraction that was
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constructed from aircraft foam which was then laminated with an acrylic material
in order to achieve a smooth and polished finish. The nozzle contraction takes
the form of a cubic polynomial contour with zero-derivative end conditions. The
nozzle has a contraction ratio of 16 : 1 and ends in a two-dimensional slot that is
D = 1.27 cm in width and H = 45.7 cm in height giving an aspect ratio (height/width)
of 36 : 1. It is in the longer dimension that the nozzle walls are contoured while
the shorter dimension walls are flat. From the nozzle the air discharges to the
surrounding ambient environment. The flow field is formed between two horizontal
confining plates of dimension 2.5 m in the flow direction and 1.61 m in width which
serve to keep the base flow two-dimensional in nature. Twin sheet metal face plates
mounted flush with the nozzle exit plane extend laterally to the edge of the flow field
and ensure that entrained air enters the near field of the jet with negligible axial
momentum component. All other sides of the flow field remain open. The entire setup
is supported in a sturdy angle iron frame to which a computer controlled traversing
mechanism is attached which provides precise hot-wire probe positioning in the three
coordinate directions. A series of large screens surround the jet flow field facility in
order to ensure that any laboratory air circulation has minimal effect on the flow.
It should be noted, however, that the jet was operated in a large laboratory space
(353 m2 floor area) so that any such effects were exceedingly small.

In this paper x will denote the streamwise spatial coordinate which is made non-
dimensional by the nozzle slot width, D. The cross-stream spatial coordinate is y and
is made non-dimensional by the local mean velocity half-width, b(x). The half-width
is defined as the distance from the jet centreline to the lateral location where the
local mean velocity has fallen to one-half its centreline value. The spanwise spatial
coordinate extending in the direction of mean flow homogeneity is denoted z. The
origin of the spanwise z-axis is chosen in the centreplane midway between the two
flow field confining plates, with positive direction upward. The velocity components
corresponding to x, y, z are denoted u, v, w, respectively.

The nozzle exit velocity was U0 = 35 m s−1 with a corresponding Reynolds number
based on nozzle slot width of ReD = 28 000. The initial jet mean velocity profiles
are flat (i.e. a ‘top-hat’ shape) with the mean velocity variation across the nascent
jet shear layers closely approximated by a classic hyperbolic tangent type of profile.
The free shear layers at the nozzle lip are both laminar and have an initial momen-
tum thickness θ0 = 0.12 mm. The initially most amplified jet shear layer instability
frequency occurs near the Strouhal number Stθ = 0.033 based on the mean speed
across the layer and the initial momentum thickness. This corresponds to a frequency
of approximately 4.8 kHz.

The planar turbulent jet flow field consists of three distinct regions. In the initial
region closest to the nozzle exit the jet consists of two transitioning planar shear
layers (with velocity ratio of unity) which bound a central core of irrotational flow
(known as the potential core). As a result of sequential vortex pairing events and
the associated mixing transition, the shear layers widen with downstream distance
and the potential core is engulfed near x/D ≈ 4. The near field of the planar jet is
unique in that the shear layers on opposite sides of the centreline contain large-scale,
spanwise-coherent vorticity of opposite sign. The merging of the shear layers near the
tip of the jet potential core gives rise to a complex interaction region which extends to
approximately x/D = 10 where the jet begins to reach a state dynamical equilibrium
and the mean velocity profiles begin to exhibit evidence of self-similar behaviour. In
other words, the mean velocity profiles become congruent when scaled by the local
centreline velocity UM(x) and the local mean velocity half-width b(x).
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Figure 2(a) presents mean velocity profiles measured at several streamwise locations
in the jet. The collapse of the profiles in the similarity coordinates U/UM versus y/b is
apparent. Figure 2(b) summarizes the streamwise variation of both the mean velocity
half-width, b(x), and the centreline velocity, UM(x) for the jet under investigation
here. For x/D > 10 both quantities exhibit classic similarity scaling with b(x) well
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approximated by

b

D
= K1

[ x
D

+ C1

]
, (2.1)

with the measured widening rate, K1 = 0.1, and the geometric virtual origin given by
C1 = 0.071. The local centreline velocity variation closely follows,(

UM

U0

)−2

= K2

[ x
D

+ C2

]
, (2.2)

with the measured mean velocity decay rate, K2 = 0.22, and the kinematic virtual
origin C2 = −0.18. These values of K1 and K2 are quite typical of those found in the
literature (see Chu 1993 for a compilation of values). Published values for the virtual
origins show considerable scatter and the study by Flora & Goldschmidt (1969) has
shown them to be strong functions of flow field initial conditions.

It is well known that profiles of various turbulent moments typically require
larger streamwise distances for the onset of self-similar behaviour than does the
mean velocity. Figure 3(a) presents profiles of the scaled Reynolds stress −u′v′/U2

M

versus y/b obtained at representative streamwise locations in the planar jet. Also
shown for comparison are the Reynolds stress measurements of both Gutmark &
Wygnanski (1976) and Bradbury (1965). The Reynolds stress is also compared with
that calculated from the measured mean velocity profile shown in figure 2(a) and the
thin shear layer form of the momentum equation. The agreement is quite good for
y/b < 1. Outside this region a disparity between stress profiles is noticeable, and is
most likely associated with intermittency effects near the edge of the jet. Figure 3(b)
presents measured profiles of scaled streamwise and lateral-component fluctuation
intensities at several representative streamwise locations. From these measurements
(and others that are not presented here) it was concluded that self-similarity for
second-order statistics starts at approximately x/D = 50. Since the focus of this
research is on coherent structure in the similarity region, the POD measurements
were performed within the streamwise interval 50 6 x/D 6 90. Although the jet
facility allows measurements to be made at larger x/D, the low velocities associated
with these stations give rise to larger relative uncertainties in multi-component hot-
wire measurements. The streamwise range quoted above represents an optimum in
the sense of achieving both self-similar jet behaviour and minimal measurement
uncertainty.

The experimental implementation of the POD requires the measurement of the
spatial cross-correlation tensor at selected x/D locations throughout the similarity
region of the jet. The process of obtaining the cross-correlation tensor is expedited by
the use of cross-stream rakes of probes. This also allows one to obtain simultaneous
velocity–time histories at multiple lateral locations across the jet which is essential later
if one is to reconstruct the temporal dynamics of the extracted POD eigenfunctions.

In this paper results from two types of experiments are reported. The primary ‘two-
rake experiment’ involves correlation measurements involving all three fluctuating
velocity components at selected x/D planes in the similarity region of the jet as
obtained by means of two spanwise-separated rakes of eight X-wire probes each.
Both of the rakes are located at the same x/D location and are oriented in the cross-
stream direction, parallel to each other. The two rakes are separated in the spanwise
direction by a user-selected distance ∆z. The rakes are mounted on a computer-
controlled traverse system which allows both their relative spanwise separation and
mutual streamwise position to be controlled. In contrast, the ‘one-rake experiment’
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involved a single cross-stream rake of 16 X-wire probes. At each streamwise location
investigated, this measurement was confined to a single line extending in the cross-
stream direction. The one-rake experiment was performed in support of the two-
rake experiment. By doubling the number of probes in the y-direction it allowed
an assessment of the degree of spatial aliasing in the inhomogeneous coordinate.
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In addition, since many previous studies of the planar turbulent jet have focused
on measurements in a fixed (x, y)-plane, it seems appropriate to compare POD
eigenmodes extracted from the one- and two-rake experiments. Details regarding
both experiments are presented in §§ 2.2 and 2.3.

Lateral profiles of turbulent normal and Reynolds stresses made both with a single
X-wire probe in the flow and with each of the multi-probe rakes were found to be
virtually identical. This indicated that the blockage associated with the rakes and
associated support hardware had no detectable effect on the measurements.

Each of the rakes utilizes miniature X-wire probes fabricated by Auspex Corpo-
ration (types A55P61 or AHWX-100). These X-wire probes have a 0.9 mm spacing
between the two probe sensors and a sensor wire length of 0.8 mm. The probe shaft
lies in the plane of the X array. The required 32-channels of constant-temperature
hot-wire anemometry and associated anti-alias filters were fabricated in-house. The
dynamic response of the transducers was found to be flat to 50 kHz, which will be
shown to be more than sufficient for the needs of the experiments. The anti-alias
filtered output voltages from the hot wires were simultaneously sampled and digitized
by means of a 64-channel MSXB data acquisition system made by MicroStar Labo-
ratories. This system features multiple sample-and-hold cards and a high-speed A/D
board that is capable of simultaneously sampling the 32 hot-wire anemometer output
voltages at rates up to 50 kHz with no detectable phase lag between channels. Digital
data are logged to an external drive in binary format and pre-processed on a labora-
tory PC computer. The data were subsequently uploaded to a Sun SPARCstation 30
for post-processing.

The X-wires were calibrated in the planar jet flow field facility by means of a
small removable rotating table which simultaneously placed all of the X-wires into
the potential core near the nozzle exit of the planar jet. The table pivots the probes
about an axis passing through the centre of the X-array and thereby allows one to
set a given angle between the probe axis and the oncoming uniform flow. During
calibration the speed of the jet was set to 12 different values within the range from
0 to U0 as measured by a Pitot-static probe connected to a U-tube micromanometer.
The probe angle with respect to the oncoming flow was set to 11 different values
within the range of −45◦ to +45◦. The output voltage from each anemometer was
recorded for each velocity–flow angle combination. These data were used to create
a look-up table to compute velocity vectors from the voltages measured during the
experiment. The look-up table procedure used in this study is similar to that described
in Chu (1993) and Ukeiley & Glauser (1995).

2.2. Description of the two-rake experiment

In this section we describe the basic procedure by which the POD eigenmodes and
associated eigenvalues are extracted in the two-rake experiment. Due to a similarity
in basic flow field geometries, our approach is patterned after that developed and
successfully implemented by Ukeiley & Glauser (1995) and Delville et al. (1999) for
their study of the plane mixing layer.

Figure 4 presents a schematic and photograph of the two X-wire rakes in the
planar jet facility. Using the rakes, correlation measurements involving the (u, v) and
(u, w) velocity components are performed at several planes of constant x/D over the
streamwise range 50 6 x/D 6 90. We denote the cross-correlation tensor as

Rαβ(y, y′, z, z′, t, t′) = 〈uα(y, z, t)uβ(y′, z′, t′)〉, (2.3)

where 〈 · 〉 denotes an ensemble average and Greek subscripts denote a fluctuating



Coherent structure in the turbulent planar jet. Part 1 157

X-wire rake

Schematic

Rakes of X-wire probes

Flow

y

x /D

∆z
Data
aquisition
system

Measurement grid
at fixed x/D

Figure 4. Orientation of the X-wire probe rakes in the two-rake experiment.

velocity component u, v or w. The velocity measurement uα(y, z, t) corresponds to the
first rake and uβ(y′, z′, t′) corresponds to the second. Note that the X-wire probes are
capable of the simultaneous measurement of either (α = u, β = v) or (α = u, β = w).
Because the flow is stationary in time and is assumed homogeneous in the spanwise
direction (z), the cross-correlation matrix Rαβ(y, y′, z, z′, t, t′) depends on the relative
coordinates ∆z = z − z′ and τ = t− t′.

Since time is a homogeneous direction, we perform a temporal Fourier transform
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of Rαβ , in order to obtain the cross-spectral matrix,

Sαβ(y, y′,∆z, f) =

∫
Rαβ(y, y′∆z, τ)e−2πifτ dτ. (2.4)

Actually the cross-spectral matrix Sαβ(y, y′,∆z, f) can be computed directly from
Fourier transformation of the individual velocity–time histories (see Bendat & Piersol
1986) and that is the approach taken in this investigation. Hence we have the
equivalent relation,

Sαβ(y, y′,∆z, f) = lim
T→∞

1

T
〈û∗α(y, z, f)ûβ(y′, z + ∆z, f)〉 (2.5)

with ûα(y, z, f) ≡ ∫ T
0
uα(y, z, t) exp (−2πift) dt denoting the Fourier transformation

of the velocity vector for each block, T is the total time duration of the data
block and the asterisk denotes a complex conjugate. We next perform a spatial
Fourier transformation in the homogeneous z-direction which provides a spanwise
wavenumber-dependent cross-spectral matrix,

Φαβ(y, y′; f, kz) =

∫
Sαβ(y, y′,∆z, f)eikz∆z d(∆z), (2.6)

where kz is a spanwise wavenumber. As shown in Lumley (1970), the spectral corre-
lation tensor Φαβ(y, y′; f, kz) will be a kernel in the integral equation to find the POD
modes for different frequencies f, and spanwise wavenumbers, kz ,∫

Φαβ(y, y′; f, kz)φ(n)
β (y′; f, kz) dy′ = λ(n)(f, kz)φ

(n)
α (y; f, kz). (2.7)

Here superscript n denotes mode number. The solution of (2.7) gives a complete set
of orthonormal eigenfunctions φ(n)

α (y; f, kz) with corresponding positive eigenvalues
λ(n)(f, kz). Note that the resulting eigenfunctions depend on temporal frequency,
spanwise wavenumber and lateral position in the inhomogeneous direction. Any
velocity realization can be represented as a sum of the eigenfunctions

uα(y, z, t) =

∞∑
n=1

∫∫
c(n)(f, kz)φ

(n)
α (y; f, kz) exp (2πift) exp (ikzz) df dkz. (2.8)

In (2.8) the coefficients c(n)(f, kz) are obtained by projection of the eigenmodes onto
individual realizations of the flow field. Although this aspect is not considered further
here, the interested reader is referred to Gordeyev (1999) for details. The spectral
correlation tensor Φαβ(y, y′; f, kz) can be expanded as

Φαβ(y, y′; f, kz) =

∞∑
n=1

λ(n)(f, kz)φ
(n)
α (y; f, kz){φ(n)

β (y′; f, kz)}∗. (2.9)

Finally, the eigenvalues λ(n)(f, kz) represent the energy distribution in frequency–
spanwise wavenumber space for each of the extracted POD modes. From the above
discussion, it is apparent that the problem of finding the POD modes is reduced to
solving a number of integral equations (2.7) with f and kz as parameters.

Before considering details regarding the practical implementation of the above
relationships, it is useful to point out certain symmetries possessed by the cross-
spectral tensor when measured in the planar jet flow field. By the term ‘symmetries’ we
mean certain transformations of the physical variables which leave the flow invariant.
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Consideration of these symmetries leads to a simplification of the experiment. The
particular symmetries in the planar jet worth mentioning are the following.

(a) Invariance with respect to translations in both homogeneous directions: time
and z-direction.

t→ t+ const, z → z + const. (2.10)

This property was used to simplify the multi-dimensional integral equation,∫∫∫∫
Rαβ(x, x′, t, t′)φ∗β(x′, t′) dx′ dt′ = λφα(x, t) (2.11)

to a number of one-dimensional integrals (2.7).
(b) Reflections in the z-direction,

z → −z, u→ u, v → v, w → −w. (2.12)

Application of (2.12) to (2.5) gives the following property of the cross-spectral matrix
Sαβ:

Sαβ(y, y′,∆z, f) = ±Sαβ(y, y′,−∆z, f), (2.13)

where the minus sign should be chosen if either α or β is equal to w, but not both.
This symmetry allows one to restrict the measurements of the S-matrix to positive ∆z
only, which reduces the required data collection at a given streamwise location by a
factor of two.

(c) Physical symmetry in the y-direction,

y → −y, u→ u, v → −v, w → w

leads to the following equality:

Sαβ(y, y′,∆z, f) = ±Sαβ(−y,−y′,∆z, f). (2.14)

The minus sign is chosen if α or β is equal to v. Equation (2.14) says that the
Sαβ-matrix exhibits a central symmetry about the origin y = y′ = 0.

(d) Symmetry with respect to the interchange of the probe pair,

(y, z)↔ (y′, z′), Sαβ(y, y′,∆z, f) = S∗αβ(y′, y,−∆z, f). (2.15)

For ∆z = 0, this property implies that Re {Sαα} is symmetrical about the line y = y′,
while Im {Sαα} is antisymmetric. Combining (2.13) and (2.15), one can show that
diagonal terms of the S-matrix are Hermitian, that is, Sαα(y, y

′,∆z, f) = S∗αα(y′, y,∆z, f).
The last two properties are useful as a check on the accuracy of the cross-spectral

measurements in the (y, z)-plane.
A discrete windowed Fourier transform, Bendat & Piersol (1986) of the digitized

time-series velocity fluctuation data was used to compute (2.5),

ûα(y, z; n∆f) = ∆t( 8
3
)1/2

Np−1∑
k=0

w(k,Np)uα(y, z; k∆t) exp (−2πikn/Np), (2.16)

n = 0 . . . Np − 1,

where ∆t is the sampling interval, ∆f = 1/T = fs/Np, fs is the sampling frequency,
Np = 2p is the number of points per data block, with p = 10, T is the data block
time duration and w(k,Np) is a suitably chosen windowing function to suppress side
lobe spectral leakage. A number of windowing functions were tried early on with the
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best results obtained with the Hanning window, Bendat & Piersol (1986),

w(j, N) = 1− cos2 (jπ/N), j = 0 . . . N − 1, (2.17)

which was selected for use in this study. The factor ( 8
3
)1/2 appearing in (2.16) properly

accounts for the signal content lost in the windowing process. In order to compute
Φαβ(y, y′; f, kz) via (2.6), the S-matrix was extended to negative ∆z by application
of (2.13) and a discrete spatial Fourier transform was performed with a Hanning
weighting function (2.17) to obtain

Φαβ(y, y′; n∆f, m∆kz)

= ∆z( 8
3
)1/2

Nz∑
k=−Nz

w(k,Ne){±Sαβ(y, y′, kh, n∆f)} exp (−ikm/Ne),

m = 0 . . . (Ne − 1), (2.18)

whereNe = 2Nz+1,Nz is the number of z measurement locations at a fixed streamwise
location, h is the spatial step size between consecutive z-locations, ∆kz = 2π/(Ne h).
Again, only the first (2Nz+1)/2 = Nz points m = 0 . . . Nz−1 are given unambiguously.
A fast Fourier transform algorithm was used to compute both (2.16) and (2.18).

2.2.1. Calculation of the POD eigenmodes

At a fixed x/D location the Φαβ-correlation tensor is known at a finite number of
equally spaced lateral positions across the jet {yi}, i = 1, . . . , m, where m is the number
of X-wire probes in one rake; for the two-rake experiment m = 8. Consequently,
integrals should be replaced with a finite quadrature form. Details of the numerical
integration procedure are presented in Gordeyev (1999). The finite approximation of
the integration (2.7) for 3m-vector φ = (φu,φv,φw)T , φα = {φα(yi; f, kz)}mi=1 can be
written in the following form:

m∑
j=1

Φαβ(yi, yj; f, kz)w(yj)φ
(n)
β (yj; f, kz)∆y = λ(n)(f, kz)φ

(n)
α (yi; f, kz), (2.19)

or

ΦαβWφβ =
λ

∆y
φα, (2.20)

where the summation is applied on repeated indices and the W -matrix is a weighting
[m× m] matrix,

W =
m-columns{w, . . . ,w}, w = {0.5,

m-2︷ ︸︸ ︷
1, 1, . . . , 1, 0.5}T -weighting m-vector, (2.21)

Φαβ = {Φαβ(yi, yj; f, kz)}m,mi,j=1 is the [m × m] Hermitian matrix and ∆y is the spacing
between probes in the rake. After multiplication, the ΦW -matrix is no longer a
Hermitian matrix. We next multiply (2.19) by W 1/2 from the left and rearrange to
obtain,

W 1/2ΦαβWφβ = (W 1/2ΦαβW
1/2)(W 1/2φβ) =

λ

∆y
(W 1/2φα), (2.22)

or

Φ̃αβφ̃β =
λ

∆y
φ̃α. (2.23)
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Figure 5. (a) Sample of u-component correlation coefficient ρuu(∆z) and (b) its spatial Fourier
transform Fuu(kz) at x/D = 70. For definition, see equations (2.24) and (2.25).

Now Φ̃αβ = W 1/2ΦαβW
1/2 is a Hermitian matrix with λ/∆y, and φ̃α = W 1/2φα being

corresponding eigenvalues and eigenvectors, respectively. The matrix equation (2.22)
was solved using a Hermitian Matrix Solver in the IMSL library for UNIX systems.
After a back transformation φα = W−1/2φ̃α, a finite set of m orthogonal spatial modes
at the discrete spatial points φ(n)

α (yi; f, kz) with the corresponding eigenvalues λ(n)(f, kz)
is obtained.

The number of eigenmodes that can be resolved is limited by the need to avoid
spatial aliasing as described by Glauser & George (1992). In this experiment it is
found that m probes generally allow m/2 modes to be resolved although, as described
below, this also depends on the particular velocity component considered. Spatial and
temporal aliasing issues are addressed in the next section.

2.2.2. Temporal and spatial aliasing concerns

The acquired data are discrete in both time and space and therefore careful
consideration must be given to avoid temporal and spatial aliasing. Avoidance of
aliasing in the homogeneous directions is straightforward and is considered first.
More subtle considerations are required in the non-homogeneous direction.

In the two-rake experiment, the traverse system allows one to control the spanwise
position of the second rake with respect to the first. At each streamwise location
investigated, one rake is placed in the (x, y)-centreplane midway between the flow
field confining plates, which corresponds to z = 0. The second rake is sequentially
positioned below the first rake at Nz = 15 different equally spaced z-locations. In
order to establish the appropriate z increment for these measurements (which we
denote as h), consideration was given to the character of the spanwise correlation
coefficient function,

ρuu(∆z) ≡ u(y, z)u(y, z + ∆z)

u2(y, z)
. (2.24)

Figure 5(a) presents a sample correlation coefficient function obtained at x/D = 70
for 40 equally spaced z-locations with a ∆z step size of 4.5 mm. This step provides
a maximum resolved wavenumber k(max)

z = 698 m−1. The u-component spanwise
macroscale is found to be approximately Λz/b = 0.22. It is noted here that the
spanwise macroscale based on the fluctuating v-component was somewhat larger,
Λz/b = 0.35. This has been observed by other investigators (e.g. Everitt & Robins
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|Svv(+b, y′, f)|/Svv(b, b, f) between two probes for y′ = 0, −b at x/D = 70.

1978; Antonia et al. 1983; Thomas & Brehob 1986). In figure 5(a), the probe separation
∆z is made non-dimensional with the local mean velocity half-width. A spatial Fourier
transform of the correlation coefficient function yields a cross-spectral density function
of spanwise wavenumber kz:

Fuu(kz) =
1

π

∫ ∞
0

ρuu(∆z)e
ikz∆z d(∆z) (2.25)

Figure 5(b) presents Fuu(kz) corresponding to the ρuu(∆z) of figure 5(a). From this
figure (and other similar measurements that are not presented here) one observes
that there is little spanwise correlation for kzb > 15. Defining kzmax ≡ 15/b we then
require that h satisfy the Nyquist constraint,

kzmax 6
π

h
. (2.26)

This gives the requirement that h 6 0.21b or equivalently, h 6 Λz . The selected value of
the stepsize in the z-direction was chosen to be h = 1.91 cm for all streamwise stations.
This stepsize in z satisfies the Nyquist constraint over the range 50 6 x/D 6 90. For
example, at x/D = 70, h ≈ 0.19b.

For the conditions under which the jet was operated, conventional power spectra
obtained in the similarity region reveal that the frequency bandwidth for the fluctuat-
ing velocity extends to approximately 5 kHz. In order to avoid temporal aliasing and
to satisfactorily characterize the turbulence, this would dictate a sampling frequency
for conventional turbulence measurements of approximately 10 kHz. Indeed, this was
the sampling frequency used for the measurements shown in figures 3(a) and 3(b).
However, since the focus of this experiment is on the large-scale structure in the
flow which is investigated via cross-spectral methods, it will be shown that a much
lower sampling frequency combined with the use of analog anti-alias filters offers
the best approach. Converged cross-spectral density functions Sαα(y, y

′; f) obtained
with a sampling frequency of fs = 10 kHz at a variety of locations in the jet simi-
larity region show that significant correlation is restricted to much lower frequencies,
even for the smallest cross-stream probe spacing. As an example figure 6 presents
both |Suu(+b, y′; f)|/Suu(b, b; f) and |Svv(+b, y′; f)|/Svv(b, b; f) as obtained for y′ = 0,
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−b at x/D = 70. Note that there is virtually no spectral coherence for frequencies
f > 400 Hz. From this figure (and others that are not presented here) it can be
seen that the spatially coherent structures in the similarity region of the jet lie at
comparatively low frequencies, so the use of relatively low sampling rates is justified
for two-point correlation measurements. In general, it is found that the cross-spectral
functions exhibit little correlation for local non-dimensional frequencies fb/UM > 1.
Consequently, the local non-dimensional sampling frequency for the experiments was
set at fsb/UM = 8.0. Using (2.1) and (2.2), this gives a streamwise variation of the
sampling frequency as fs(x/D) = 170 U0/D(x/D)−3/2 = 4.7× 105(x/D)−3/2 (Hz). For
the range of x/D investigated in this experiment the sampling frequency varied from
1.3 kHz at x/D = 50 to 0.55 kHz at x/D = 90. In each case the cutoff frequency of
the anti-alias analog filters was set to fs/2 in order to prevent temporal aliasing.

In order to ensure stationary statistics, convergence tests were performed. For the
sampling rates quoted above, these showed that by sampling the fluctuating velocity in
blocks of Np = 1024 points for a total of Nb = 500 blocks the required cross-spectral
statistics were fully converged. This corresponds to a total sample time of between
6.5 and 15.5 minutes as x/D varies from 50 to 90, respectively.

The two-rake experiment uses 8 X-wire probes (per rake), equally spaced in the
inhomogeneous y-direction with ∆y = 5 cm. In order to assess and minimize the
degree of spatial aliasing in the y-direction, use was made of a single-rake experiment
with 16 equally spaced X-wires across the jet. Thus the spacing between probes was
half that for the two-rake case, ∆y1 = ∆y/2 = 2.5 cm. In order for the two-rake
experiment to correctly resolve the cross-spectral matrix in the y-direction, the spatial
Nyquist wavenumber kyN = π/∆y must be greater than the maximum wavenumber
exhibiting non-zero lateral spatial correlation. At each x/D location the cross-spectral
density Sαα(y, y

′, St) (where St = fb/UM) was computed between all probe pairs. For
the 16-probe rake this represents a total of 120 cross-spectral measurements at each
streamwise location for each combination of velocity components Suu, Svv and Sww . A
spatial Fourier transform of the resulting cross-spectra yields

Xαα(ky, y, St) =

∫
Sαα(y

′, y, St)e−ikyy
′
dy′. (2.27)

Of particular interest is the magnitude |Xuu(ky, y, St)|2, which is plotted as a function
of kyb for selected representative values of the parameter St in figure 7. Similar
results were examined for |Xvv(ky, y, St)|2 and |Xww(ky, y, St)|2. Figure 7 shows that all
significant lateral correlation of streamwise fluctuations occurs for kyb 6 4.4. Similar
results based on the magnitude of Xvv(ky, y, St) and Xww(ky, y, St) show significant
spectral content limited to kyb 6 3.2 and 6.2, respectively. In order to avoid spatial
aliasing in the measurement of Suu(y

′, y, St) it is required that the lateral probe spacing
∆y/b 6 2π/(2kyb)max = 0.7. This corresponds to a requirement on lateral probe
spacing of between 4.44 cm at x/D = 50 to 8 cm at x/D = 90. The requirements for
measurement of Svv(y

′, y, St) are less stringent. In this case the required lateral probe
separation varies from 6.4 cm to 11.4 cm over the same streamwise range. The most
stringent requirement for the avoidance of aliasing is associated with measurement
of Sww(y′, y, St) which requires a probe separation of from 2.7 cm to 4.8 cm over the
range 50 6 x/D 6 90.

Based upon the single-rake measurements, spatial aliasing would not be expected
to significantly influence the u- or v-modes except perhaps at x/D = 50 where higher-
order u modes could be affected. The constraint on the w-component means that only
the lowest-order w modes can be faithfully captured. Fortunately, it will be shown
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that the higher-order w modes are of very low energy so this was not deemed a
critical factor in the experiment.

2.3. Description of the single-rake experiment

The cross-spectral matrix Sαβ(y, y′, f,∆z = 0) obtained with the single rake of 16
X-wire probes can be used to compute a set of single-rake POD eigenmodes ψ(n)

α (y; f)
with corresponding eigenvalues µ(n)(f) from the relation∫

Sαβ(y, y′; f,∆z = 0)ψ(n)
β (y′; f) dy′ = µ(n)(f)ψ(n)

α (y; f). (2.28)

The approach taken in the numerical solution of the above integral equation is
similar to that described for (2.7) in § 2.2.1. In this case, however, the resulting
eigenfunctions are not functions of spanwise wavenumber kz but depend only on
Strouhal number, St, and the inhomogeneous spatial coordinate y. Since the probe
spacing in y is one-half that for the two-rake experiment, the spatial resolution of
the eigenmodes is improved. However, since the one-rake experiment does not resolve
the spanwise direction, the resulting POD modes will represent a weighted sum of the
two-rake spanwise-wavenumber-dependent POD modes. Hence, comparison of the
results obtained in the one- and two-rake experiments allows one to gauge the effects
of rake resolution (because of the larger number of probes in the inhomogeneous
coordinate) and the effects of aliasing multiple spanwise wavenumber kz modes in
measurements confined to a single (x, y)-plane.
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3. Experimental results
In this section results from both the dual- and single-rake experiments are presented.

Before examining the POD eigenfunctions and eigenvalues which form the primary
focus of this paper, we give consideration to the form exhibited by the measured
cross-spectral matrices, Sαβ(y, y′, St,∆z = 0) as obtained in the single-rake experiment
and Φαβ(y, y′, St, kz) from the dual-rake experiment. As shown by (2.28) and (2.7),
these quantities provide the required experimental input for implementation of the
POD. In addition, examination of these quantities provides a bridge to earlier studies
of the planar jet which have typically utilized correlation methods to infer global
structure.

Note that the Sαβ, Φαβ and the derived POD eigenvalues and eigenmodes obtained
in the similarity region of the jet form an extensive data set and space limitations
allow only a representative sample to be presented here. For those readers interested
in examining the full data sets, they may be acquired from either the authors or the
JFM editorial office.

3.1. Character of the cross-spectral matrix Sαβ(y, y′, St,∆z = 0)

Since many previous studies of coherent structure in the planar jet similarity region
have employed two-point correlation measurements obtained in either the (x, y)- or
(y, t)-(equivalent to y, f) planes, it seems appropriate to first summarize the char-
acteristics exhibited by the cross-spectral matrix, Sαβ(y, y′, St,∆z = 0), as measured
in the 16-X-wire single-rake experiment. Examination of this spectral matrix reveals
similarities between the time-averaged structural patterns exhibited in the planar jet
studied here and those investigated in previously cited references. Later, we will also
contrast the spatial POD modes extracted in the one- and two-rake experiments. This
will demonstrate the unavoidable aliasing of multiple spanwise wavenumber modes
that is inherent whenever measurements are confined to a single plane, normal to the
z-direction.

Using the single rake, the quantities Suu, Svv, Sww, Suv , and Suw were measured at the
five streamwise stations, x/D = 50, 60, 70, 80 and 90. In this section selected results
are presented only for x/D = 70 and these may be considered representative of the
other streamwise locations. Sαβ is a complex quantity which depends on the lateral
probe positions y and y′ as well as temporal frequency, f. In order to present this
quantity graphically, we choose to present iso-contours of Re {Sαβ} and Im {Sαβ} in
y, y′ space for selected representative frequencies f. In presenting these results, the
cross-stream coordinate is scaled by the local mean velocity half-width b(x) and the
frequency f is scaled by UM/b to form the local Strouhal number, St = fb/UM . In
this representation, the first and third quadrants correspond to probe pairs positioned
on the same side of the jet while the second and fourth quadrants represent probes
positioned on opposite sides of the jet centreline. Note also that the scalar separation
between the two probes increases most rapidly in both directions normal to the line
y = y′.

Figure 8 presents iso-contours of Re {Suu(y, y′, St) × 103} for four representative
Strouhal numbers, St = 0.05, 0.1, 0.14, and 0.19. Note that the iso-contours of Re {Suu}
exhibit a symmetry about the line y = y′ and a central symmetry about the origin.
The symmetry with respect to the line y = y′ is equivalent to symmetry with respect
to interchange of the probe positions (2.15). The central symmetry about the origin
(2.14) is equivalent to a reflection symmetry with respect to the jet centreplane. Figure
8 shows that positive correlation between streamwise velocity fluctuations occurs only
when the two participating probes are located on the same side of the jet centreline
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Figure 8. The real part of the spectral correlation matrix Re [Suu(y, y
′, St)]× 103 for (a) St = 0.05,

(b) 0.1, (c) 0.14, (d) 0.19 at x/D = 70.

(i.e. y and y′ values corresponding to quadrants 1 and 3). In contrast, lobes of
negative Re {Suu} are apparent in figure 8 for quadrants 2 and 4 which indicates that
streamwise fluctuations are negatively correlated on average whenever the probes are
positioned on opposite sides of the jet centreline (when y and y′ are of opposite sign).
That the negative correlation occurs at lower levels is due, in part, to the fact that it
is associated with larger probe separations. The existence of negative correlation in
figure 8 is a manifestation of the phenomenon that was referred to as ‘jet flapping’ in
the early studies cited in § 1.2.

It is the rather striking contour pattern shown in figure 8 that provides strong
evidence of the existence an ordered underlying large-scale structure in the planar
jet similarity region. The essential character of this pattern is observed to be similar
for each of the Strouhal numbers presented in figure 8, the main difference being a
reduction in the magnitude of Re {Suu} with increasing St. The maximum positive cor-
relation occurs at y/b = y′/b = ±0.9 for St = 0.05 and quickly decays as St increases,
with the peak’s location gradually shifting to y/b = y′/b = ±0.7. Note that the level
of positive correlation near the jet centreline is much smaller than at off-axis locations.
Small positive correlation values near the centre of the jet imply that fine-scale turbu-
lent fluctuations are primarily responsible for the local r.m.s. streamwise fluctuations
there. The maximum negative correlation occurs near (y/b, y′/b) = ±(0.7,−0.7) for
St = 0.05 which coincides with the location of peak Reynolds stress shown in figure
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Figure 9. The imaginary part of the spectral correlation matrix Im [Suu(y, y
′, St)]× 103

for (a) St = 0.05, (b) 0.1, (c) 0.14, (d) 0.19 at x/D = 70.

3(a). Figure 9 presents iso-contours of Im {Suu(y, y′, St) × 103}. Since this quantity is
equivalent to a Fourier sine transform of Ruu, interpretation in terms of the physics
of the fluctuating velocity field is more difficult. Note, however, that from (2.5), (2.14)
and (2.15) Im {Sαα(y, y, f)} = Im {Sαα(y,−y, f)} = 0, α = u, v, w. Examination of figure
9 shows that this gives rise to the eight alternating lobes of positive and negative
correlation present. Each of the iso-contour plots in figure 9 is observed to be sym-
metric with respect to a π rotation about the origin. Note also that the magnitude of
Im {Suu} is significantly smaller than Re {Suu} at corresponding Strouhal numbers.

Figure 10 presents iso-contours of Re {Svv(y, y′, St) × 103} for the same represen-
tative Strouhal numbers as in figures 8 and 9. The observed iso-contour pattern is
quite different from that observed in figure 8 with only positive values of Re {Svv}
present. In particular, figure 10 shows that the lateral fluctuating component exhibits
plateau of positive correlation that extend well across the jet centreline. That is, unlike
the u-component, the fluctuating v-component is positively correlated across the jet.
In addition, the maximum values of Re {Svv(y, y′, St)} occur at a Strouhal number
of approximately St = 0.1. This is consistent with v-based spectral and two-point
correlation measurements presented in Cervantes & Goldschmidt (1981), Antonia et
al. (1983), and Thomas & Brehob (1986). Although not presented here, the corre-
sponding iso-contours of Im {Svv(y, y′, St)} also exhibit maximum values at St = 0.1
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Figure 10. The real part of the spectral correlation matrix Re [Suu(y, y
′, St)]× 103 for (a) St = 0.05,

(b) 0.1, (c) 0.14, (d) 0.19 at x/D = 70.

and decay quite rapidly with increasing Strouhal number. As required by symmetry,
Im {Svv} = 0 for y = y′ and y = −y′. It is also observed that, in general, the values
of Im {Svv} are substantially smaller than Re {Svv}, particularly at the higher Strouhal
numbers.

Figure 11 presents Re {Sww(y, y′, St)× 103} iso-contours at the same representative
Strouhal numbers as in the previous figures. Small squares visible on the diagonal
line y = y′ are artifacts of the plotting software. Figure 11 shows that the maximum
values of Re {Sww} are approximately four times smaller than those for Re {Suu}. In
addition, positive correlation for Re {Sww} is restricted to smaller probe seperations
as most of the positive contours lie along the diagonal y = y′ and these fall off in
value rather quickly for |(y − y′)/b| > 0.7. The peak positive values of Re {Sww} are
located near y/b = ±0.7 for St = 0.14. Hence peak w-correlation occurs at higher
Strouhal numbers than for u or v. Small lobes of negative correlation similar to
those observed for Re {Suu} are shown in figure 11 at (y/b, y′/b) = ±(0.7,−0.7). They
are most prominent at St = 0.14. However, the values are much smaller than those
occurring for Re {Suu}.

Figure 12 presents iso-contours of both the real and imaginary parts of Suv(y, y
′, St)×

103 for the Strouhal number, St = 0.1. This Strouhal number exhibits near-peak values
of both Re {Suv} and Im {Suv}. Although not presented here, the degree of correlation
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Figure 11. The real part of the spectral correlation matrix Re [Sww(y, y′, St)]× 103

for (a) St = 0.05, (b) 0.1 (c) 0.14, (d) 0.19 at x/D = 70.

becomes considerably weaker at higher Strouhal numbers. For the measurements
presented in figure 12, the u-component is obtained at location y and the v-component
at y′. Iso-contours of Re {Suv} exhibit positive correlation for y > 0 and negative
correlation exists for y < 0. The maximum value of the correlation magnitude
is located near (y/b, y′/b) = ±(0.7, 0.7) over the range of St = [0.05 . . . 0.1]. Note
that no correlation exists between u- and v-components along the line y = 0 (i.e.
u′(y = 0)v′(y′) = 0). Recall that the v-component is positively correlated across the
jet while the u-component is antisymmetric with respect to the jet centreline. That
figure 12 shows that Re {Suv} = 0 when y = 0 but is non-zero for y′ = 0 indicates
that streamwise fluctuations on the centreline must be associated primarily with small
scales and are uncorrelated with larger-scale lateral fluctuations. The iso-contours
of Im {Suv} shown in figure 12 indicate that the imaginary part of the tensor is
considerably smaller than the real part.

Although not presented here, three points should be made regarding the real and
imaginary parts of Suw(y, y′, St). First the magnitude of both the real and imaginary
parts of Suw are generally much smaller than for Suv at the same Strouhal numbers.
Second, significant values of Suw are restricted to smaller probe separations than for
Suv . Finally, the iso-contours exhibit much more complex patterns than for other
components of the cross-spectral tensor. These observations, taken together, suggest
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Figure 12. (a) The real and (b) the imaginary parts of the spectral correlation matrix
Suv(y, y

′, St)× 103 for St = 0.1 at x/D = 70.

that a smaller-scale flow structure is responsible for the u′w′ correlation than that
responsible for u′v′.

3.2. Character of the cross-spectral matrix Φαβ(y, y′, St, kz)
In this section representative results obtained from measurement of the cross-spectral
tensor Φαβ(y, y′, St, kz) in the dual-rake experiment are presented. As shown in (2.6),
Φαβ essentially unfolds Sαβ in spanwise wavenumber space. It also follows from (2.6)
that the determination of the Φαβ-matrix requires that the correlation matrix Sαβ be
measured for several different spanwise separations ∆z between the two rakes as
described in § 2.

In the presentation of Φαβ , the spanwise wavenumber is rendered dimensionless
by the local mean velocity half-width, b(x). As in the previous section, these mea-
surements will be presented in the form of iso-contours of Φαβ in (y, y′)-space. In
each case the example presented will correspond to the Strouhal number yielding
peak magnitude of Φαβ . The contour plots are presented for selected dimensionless
spanwise wavenumbers, kzb. Although the two-rake measurements were performed
throughout the planar jet similarity region at x/D = 50, 60, 70, 80 and 90, only se-
lected measurements at x/D = 70 are shown in this section. These may be considered
representative of the other locations.

Figure 13 presents iso-contours of both the real and imaginary parts of Φuu(y, y
′, St=

0.05, kz) for three selected spanwise wavenumbers. The value St = 0.05 corresponds
to the maximum level of Φuu in the frequency domain. This figure clearly shows
that Re {Φuu} and particularly Im {Φuu}, decay fairly rapidly with increased spanwise
wavenumber. This suggests that the dominant structural component of the flow
responsible for the large-scale streamwise velocity correlation is at least quasi-two-
dimensional. The reader is invited to compare the quantity Φuu(y, y

′, St = 0.05, kz = 0)
as shown here and Suu(y, y

′, St = 0.05, ∆z = 0) as shown in figures 8 and 9. The
similarity between the two functions is indicative of the dominance of the planar
kz = 0 mode since

Suu(y, y
′, St,∆z = 0) =

∫
Φuu(y, y

′; St, kz) dkz. (3.1)
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Figure 13. The spectral correlation matrix Φuu(y, y
′, St = 0.05, kz)× 103 for

(a) kzb/2π = 0, (b) 0.33, (c) 0.66.

In other words, the similarity between these figures indicates that higher-kz modes
must contribute little to Suu. Nevertheless, it must also be noted that some degree
of large-scale correlation at non-zero wavenumbers is present in figure 13 and this
suggests the presence of a large-spanned three-dimensional structure.
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Figure 14. The spectral correlation matrix Φvv(y, y
′, St = 0.1, kz)× 103 for (a) kzb/2π = 0, (b) 0.33.

Figure 14 presents iso-contours of both the real and imaginary parts of Φvv(y, y
′, St=

0.1, kz). In this case only two spanwise wavenumbers are shown since the decay of
Φvv with kz is even more rapid than was the case for the streamwise fluctuations. The
implication is that the structure in the flow responsible for the large-scale v-component
correlation is quite two-dimensional in nature. This is also apparent upon comparison
of Re [Φvv(y, y

′, St = 0.1, kz)] as shown in figure 14 with Re [Svv(y, y
′; St = 0.1,∆z = 0)]

shown in figure 10. Again, based upon the similarity, one is forced to conclude that
higher-wavenumber modes contribute very little to Svv .

The variation of the real and imaginary parts of Φww(y, y′, St = 0.14, kz) with
spanwise wavenumber is presented in figure 15. The rate of decay with increased
wavenumber is generally smaller in this case suggesting that a non-planar structure is
responsible. This is also evident in comparing Φww with Sww . Although not shown here,
we observe a significant difference, especially in the imaginary parts. This suggests
that higher spanwise wavenumber modes are considerably more significant for the
w-component fluctuations than was the case for v or u.

Figure 16 presents real and imaginary parts of Φuv(y, y
′, St = 0.1, kz). This figure
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Figure 15. The spectral correlation matrix Φww(y, y′, St = 0.14, kz)× 103 for
(a) kzb/2π = 0, (b) 0.33, (c) 0.66.

reveals a fairly rapid decay of Φuv with kz which suggests that motions responsible for
u′v′- correlation are largely two-dimensional. This is also apparent from comparison
of figure 16 with Suv as shown in figure 12. The pattern exhibited by Re {Φuv} is
consistent with the existence of a structure that gives rise to antisymmetric large-
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Figure 16. The spectral correlation matrix Φuv(y, y
′, St = 0.1, kz)× 103 for (a) kzb/2π = 0, (b) 0.33.

scale u-fluctuations and v-fluctuations which exhibit positive correlation across the
jet.

In order to clarify the variation of Φuu with Strouhal number figure 17 presents
surface plots of the real part of Φuu(y, y, St; kzb) for four selected wavenumbers
kzb/2π = 0, 0.33, 0.66, 1. The correlation matrix has two well-defined positive peaks
centred near (y/b = ±1, St = 0.05). These decay rapidly with increased St, so
the spectral correlation for frequencies higher than St = 0.4 is completely negligible.
Nevertheless, small tails in the correlation at large St suggest some degree of temporal
intermittency of the underlying structure. As was observed in figure 13, the maximum
values of Re {Φuu(y, y, St, kzb)} occur at kz = 0 and become weaker for larger kz values
and virtually no correlation is present for kzb > 1. Note also that at the centreline of
the jet correlation values are comparatively small (even for St = 0.05 and kz = 0).

The real part of Φvv(y, y
′, St) for kzb/2π = 0, 0.33, 0.66 is presented as a surface plot

in figure 18. Note that the correlation reaches maximum at (y = 0, St = 0.1, kz = 0)
and quickly decays for larger St and kz . The levels of Re {Φvv} shown here are
comparable to those shown in figure 17 for Re {Φuu}. Comparison with figure 17
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shows that the decay in kz is more rapid for Φvv than for Φuu. Again low-amplitude
tails at larger Strouhal numbers suggest an intermittent underlying structure.

Surface plots of the real part of Φww(y, y, St) for kzb = 0, 0.33, 0.66 are presented
in figure 19. The two-positive correlation peaks are located at (y/b = ±0.7, St =
0.14, kz = 0) and no visible correlations exist for St > 0.4 or for kzb/2π > 0.66 at
any St. Comparison with results for Re {Φuu} and Re {Φvv} shown in figures 17 and
18, respectively, reveal that the correlation levels associated with the w-component
are considerably smaller than those for the u- and v-component fluctuations.

3.3. POD eigenfunctions and associated eigenvalues obtained
from the two-rake experiment

In this section the POD eigenfunctions and associated eigenvalues obtained from the
solution of equation (2.19) using the experimentally obtained cross-spectral matrix
Φαβ are presented. Bear in mind that the cross-spectral matrix Φαβ provides a measure
of time-averaged large-scale correlation in the flow. Consequently, the extracted POD
eigenfunctions are directly related to an average shape of the large-scale structure in
the jet. Furthermore, both time and the spanwise z-direction are transformed into
frequency and wavenumber spaces, respectively, by means of Fourier transformations
as indicated in (2.5), (2.6). Therefore, the resulting POD eigenfunctions provide the
average shape of the structure in a mixed physical–Fourier space (y, St, kz).

To find the POD modes, the equation (2.7) must be solved. This requires determi-
nation of all nine components of the cross-spectral matrix, Φαβ . Unfortunately, only
the five components Φuu, Φuv , Φvv , Φuw and Φww can be directly measured via the
x-wire rakes; the term Φvw is not directly available. However, as will be described in
some detail in § 4, this term can be calculated from a knowledge of the other com-
ponents by means of the continuity equation and by invoking a Taylor’s frozen field
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approximation. The remaining terms Φvu, Φwu and Φvw follow by using the property
that the Φ-matrix is Hermitian.

Our approach to the reconstruction procedure which transforms the POD eigen-
modes into the physical domain and allows restoration of the instantaneous shape
of the structures, involves a coupling between the continuous wavelet transform,
the experimentally determined POD eigenmodes obtained from equation (2.7) and
instantaneous realizations of the flow field obtained by means of three spanwise-
separated hot-wire rakes. This procedure recovers the phase information necessary
for the reconstruction of the physical flow structures and the investigation of their
dynamic behaviour. This aspect is the topic of Part 2 and will not be pursued
further here. Instead, we focus on the character of the eigenmodes themselves and
explore their self-similarity. In order to do this we would like to avoid invoking a
Taylor’s frozen field approximation which is required to obtain the full Φαβ tensor.
Here we will instead present POD modes calculated using only the diagonal terms
Φαα, ∫

Φαα(y, y
′; f, kz)φ(n)

α (y′; f, kz) dy′ = λ(n)
α (f, kz)φ

(n)
α (y; f, kz). (3.2)

It is important to note that the above relation excludes any information contained in
the off-diagonal terms, Φuv , Φwv , and so on. Strictly speaking then, the POD modes
derived from solving (3.2) and those obtained from solving (2.7) will be different. In
fact, they will be the same only if the off-diagonal terms are zero. Since, as shown in
the previous section, Φuu and Φvv dominate the off-diagonal term Φuv we can expect
the u- and v- component POD modes obtained by solution of (3.2) to be quite similar
to the POD modes obtained by (2.7). In fact, this turns out to be the case as will be
shown in Part 2. In the case of the w-mode our results show that Φww and Φuw are
of the same order of magnitude. Hence we can expect a more substantial disparity
between the w-component POD modes derived from (3.2) and (2.7). Nevertheless, it
is also worth mentioning that the set of w-component POD modes obtained via (3.2)
is still complete, as follows from (2.9), and can be treated as another completely valid
way to investigate the Φww-term. Thus, while the u- and v-component POD modes
obtained from (3.2) can shed light onto the shape of the structure, more caution must
be exercised in forming conclusions regarding the w-component structure based on the
presented w-modes. As shown in Part 2, only the w-component POD modes from (2.7),
combined with instantaneous phase information obtained from the projection onto
the flow field, will provide the physical flow structure responsible for the w-component
fluctuation.

In summary, the information contained in the off-diagonal terms of the cross-
spectral matrix is crucial for modelling the jet dynamics and for reconstructing
the large-scale structure in physical space. The focus of this paper is on (i) the
documentation of the cross-spectral matrix, (ii) examination of the basic character of
the POD modes in the y, St, kz domain and (iii) the exploration of the self-similarity
of the POD modes and eigenvalues. To do this we exploit the dominance of the
diagonal terms in the cross-spectral matrix and thereby avoid use of a Taylor’s frozen
field approximation by working with (3.2) instead of (2.7).

The POD eigenmodes φ(n)
α (y; x/D, St, kzb) with the corresponding eigenvalues

λ(n)
α (St, kzb; x/D) were calculated from (2.19) for each individual Φαα, α = u, v, w.

We will subsequently refer to φ(n)
u , φ(n)

v and φ(n)
w as the nth u-, v- and w-modes, respec-

tively. As was the case in the presentation of the correlation matrices Sαβ and Φαβ ,
we choose to highlight results obtained at x/D = 70 and these may be considered
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representative. Results obtained at the other streamwise locations will be presented
when we examine similarity scaling of the eigenfunctions and eigenvalues.

We first give consideration to the energy content of the POD modes as expressed
through their respective eigenvalues. For a given fluctuating component α, one can
investigate the ratio of energy contained in mode number n to the total energy in
large-scale modes resolved by the experiment (see the related discussion in §§ 2.2.2
and 3.2). That is, the relative energy of the α-component mode number n is given by

ER(n; α – mode) =

∑
f,kz

λ(n)
α (f, kz)∑

n

∑
f,kz

λ
(n)
α (f, kz)

(3.3)

Alternatively, for a given fluctuating component we can consider the cumulative effect
of all modes up to the n-th mode again expressed as a ratio of the total energy in
that fluctuating component,

EC(n; α – mode) =

n∑
k=1

∑
f,kz

λ(k)
α (f, kz)∑

n

∑
f,kz

λ
(n)
α (f, kz)

(3.4)

Figure 20 presents both ER(n; α – mode) and EC(n; α – mode) for the u-, v- and w-
components. Note that the first u-mode contains approximately 36% of the total large-
scale energy of the u-component and the first four modes account for approximately
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Figure 21. The first u-mode: (a) Eigenvalues λ(1)
u (f, kz; x/D = 70), and the eigenmodes

|φ(1)
u (y, St, kz; x/D = 70)|2 for (b) kzb/2π = 0, (c) 0.33 and (d) 0.66.

85%. The convergence is even more rapid for the v-component. The first v-mode is
responsible for 61% of the large-scale v-component energy with the first three modes
capturing nearly 90%. The w-component eigenvalues show a slower convergence,
with 33% of the energy contained in the first mode. The first four modes account for
over 80% of the w-component energy in the flow. With regard to the possibility of
building a low-dimensional model of the self-similar region of the turbulent planar
jet, figure 20 is very encouraging. Considering that this is a fully turbulent shear flow,
it is of interest to note that such a large fraction of the fluctuation energy is accounted
for by the first 3–4 POD modes and this suggests that Galerkin projection of these
modes onto the Navier–Stokes equations could provide the basis for a model that
can capture the essential large-scale dynamics of the flow (for example, see Aubry et
al. 1988 and Ukeiley & Glauser 1995).

The eigenvalues λ(1)
u (St, kzb) for the first (and most energetic) u-mode obtained at

x/D = 70 are presented in figure 21(a). The eigenvalues are plotted as a surface
in (St, kzb)-space. As such, this figure represents the φ(1)

u energy distribution in the
frequency–spanwise wavenumber domain. The peak u-eigenvalue is located near
(St = 0.05, kz = 0). Note that essentially all the energy of the first u-mode is
concentrated in a low-wavenumber range kzb/2π 6 1. This suggests the existence of a
relatively extended modal structure in the spanwise direction (i.e. of order b). Further,
the fairly sharp peak in Strouhal number reflects a nearly periodic behaviour in time.
There is little energy content for St > 0.2.

Because the eigenmodes are orthonormal, examination of equation (2.9) reveals that
it is convenient for their presentation to multiply by the corresponding amplitude
factor, (λ(n)

α (St, kz))
1/2. Unless otherwise noted, in the remainder of this paper all POD

eigenmodes that are presented have had this amplitude scale factor applied.
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Figure 22. The second u-mode: (a) Eigenvalues λ(2)
u (f, kz; x/D = 70), and the eigenmodes

|φ(2)
u (y, St, kz; x/D = 70)|2 for (b) kzb/2π = 0, (c) 0.33 and (d) 0.66.

The modulus-squared of the first u-mode, φ(1)
u , for selected spanwise wavenumbers

kzb/2π = 0, 0.33, 0.66 is shown in figure 21(b–d). The shape of the u-mode at kz = 0 is
symmetric in the y-direction, as evidenced by two symmetrical ‘humps’ centred near
y/b = ±1. For kzb/2π = 0.33 though, figure 21(c) reveals a cross-stream asymmetry
whereby the modal amplitude on the −y side of the jet is larger than on the +y
side. A similar trend is observed for the case kzb/2π = 0.66 shown in figure 21(d).
Note however that the modal amplitude is considerably smaller at the larger spanwise
wavenumbers.

The second u-mode eigenvalues and eigenfunctions are presented in figure 22.
The eigenvalue distribution in (St, kz)- space is shown in figure 22(a) and exhibits
a peak near (St = 0.03, kz = 0). Note that the peak has a small, relatively flat
plateau that extends in the kz-direction. Again, however, there is little energy content
for kzb/2π > 1. As was the case for mode 1, the St band of significant energy
content is also rather narrow. Figure 22(b) presents the scaled modulus-squared
of φ(2)

u for kz = 0. It is approximately symmetrical in the y-direction. However,
higher-wavenumber modes presented in figures 22(c) and 22(d) reflect a cross-stream
asymmetry similar to what occurred for u-mode 1. For kzb/2π = 0.33 the modal
amplitude on the +y side of the jet dominates the −y side. Comparison of this figure
with figure 21(c) reveals that the shape of the second mode at kzb/2π = 0.33 is almost
a mirror image of the first mode at the same wavenumber. The same can be said of a
comparison between u-mode 1 and 2 shapes at kzb/2π = 0.66 (figures 21d and 22d).

Figure 23(a) presents the eigenvalue distribution in (St, kz)-space for the first v-
mode. Note that the peak energy is associated with kz = 0 and St = 0.1. In this
case the decrease in energy with increased kz is much more rapid than for the u-
modes previously presented. The first scaled v-mode is shown for selected spanwise
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Figure 23. The first v-mode: (a) Eigenvalues λ(1)
v (f, kz; x/D = 70), and the eigenmodes

|φ(1)
v (y, St, kz; x/D = 70)|2 for (b) kzb/2π = 0, (c) 0.33 and (d) 0.66.

wavenumbers in figure 23(b–d). The v-mode shows a symmetrical behaviour in the
cross-stream direction for kz = 0 with peak amplitude on the jet centreline. For non-
zero wavenumbers the shape is similar but the amplitude is greatly reduced. Figure
23 suggests that the first v-mode is essentially planar. Although the second v-mode
is not presented here, it exhibits minimum amplitude on the jet centreline and two
peaks near y/b = ±1. The mode shape is similar for both zero and non-zero spanwise
wavenumbers. The associated eigenvalue distribution peaks at kz = 0 and St = 0.10
but the peak eigenvalue is only about one-sixth the value for v-mode 1. The rapid
reduction in |φ(2)

v |2 with kz is also indicative of a planar mode.
Finally, a comment should be made about the eigenvalues and squared-modulus

of the first w-mode. For the first w-mode, the eigenvalue peak is located at (St =
0.12, kz = 0). However, the maximum w-eigenvalue is only one fifth the maximum
mode 1 u-eigenvalue. Near St = 0.12 the w-mode appears symmetrical in the cross-
stream direction for both zero and non-zero wavenumbers. Its shape exhibits a
minimum value near the jet centreline and peak values occur near y/b = ±1. The
mode shapes at lower St are asymmetric in y.

3.4. The self-similarity of the POD modes

In this section we investigate the self-similarity of the POD eigenvalues and eigen-
modes by application of suitable scaling. From (2.3) the dimension of Rαβ is [L2T−2],
and since Φαβ is a Fourier transform of Rαβ in time t and space z (see equations
(2.4) and (2.6)) the appropriate dimension of Φαβ is [L2T−2 · L · T ] = [L3T−1]. From
(2.7) it follows that the appropriate dimension for the eigenvalue λ is [L4T−1]. Thus,
in terms of global flow field variables, the appropriate scaling for λ is b3Um and the
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Figure 24. (a) Unscaled eigenvalues λ(1)
u (f, kz; x/D) for the first u-mode for several x/D-stations.

(b) Streamwise development for kz = 0.

eigenvalues can be written in the following non-dimensional form:

λ(n)(f, kz; x/D) = b3Umλ̃
(n)(St, kzb; x/D). (3.5)

The appropriate non-dimensionalization for the POD modes will be

(λ(n)
α (f, kz; x/D))1/2φ(n)

α (y; f, kz, x/D)

= (b3Umλ̃
(n)
α (St, kzb; x/D))1/2 φ(n)

α (y/b; St, kzb, x/D). (3.6)

An example of the measured eigenvalue variation over the streamwise distance
covered in this experiment is presented in figure 24. In particular, figure 24(a) shows the
streamwise variation of λ(1)

u (f, kz; x/D), the unscaled u-component mode 1 eigenvalues
over the streamwise range 50 6 x/D 6 90. This figure shows that the maximum
unscaled eigenvalue increases in magnitude and shifts to smaller frequencies with
increased streamwise distance. This is also readily apparent from figure 24(b) which
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Figure 25. Scaled eigenvalues λ̃(1)
u (St, kz; x/D) for the first u-mode.

highlights the streamwise development of the kz = 0 (i.e. a planar mode) u-component
mode 1 eigenvalues.

If the POD eigenmodes and eigenvalues exhibit self-similarity then after a suitable
rescaling (3.5) and (3.6), we must have congruence of both the non-dimensional
eigenvalues λ̃(n)

α (St, kzb; x/D) in (St, kzb)-space and the eigenfunctions in (y/b, St, kzb)-
space.

Since the eigenvalues form surfaces in St, kz space this poses a challenge in providing
a meaningful comparison at different x/D stations. One way of performing such a
comparison is to ‘slice’ each of the eigenvalue surfaces at selected values of St
and compare their variation with spanwise wavenumber kz and at each streamwise
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Figure 26. Scaled eigenvalues λ̃(1)
v (St, kz; x/D) for the first v-mode.

position. Alternatively, we may slice the surfaces at selected kz and compare their
variation with Strouhal number at each streamwise location. Both approaches are
taken in the results presented next.

Figure 25 presents the scaled mode 1 u-component eigenvalues. For reference, the
scaled eigenvalue distribution in (St, kzb/2π)-space at x/D = 70 is shown in order to
indicate the location of the ‘slices’ taken for the associated plots. The figure shows the
variation of the planar mode (kz = 0) eigenvalues, λ̃(1)

u , with St for 50 6 x/D 6 90.

In addition, the variation of λ̃(1)
u with kzb/2π is shown for four representative values

of St over the same streamwise locations. This figure shows quite convincingly that
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Figure 27. Scaled eigenvalues λ̃(1)
w (St, kz; x/D) for the first w-mode.

the scaled u-component eigenvalue distribution becomes self-similar for x/D > 50 as
evidenced by the congruence of the scaled profiles at the different x/D stations. The

reader is invited to compare the scaled planar mode eigenvalue λ̃(1)
u variation with St

shown in figure 25 with the unscaled version shown previously in figure 24(b). The
effect of the similarity scaling in collapsing the eigenvalues at the various streamwise
locations is obvious.

Figure 26 shows a similar representation of the scaled mode 1 v-component eigen-
values, λ̃(1)

v . The variation of the planar mode (kz = 0) eigenvalues with St for selected
streamwise locations is shown to exhibit similarity. In addition, the variation with
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span-wise wavenumber kzb/2π for selected St also exhibits collapses for the various
x/D locations shown. Figure 26 shows that the v-component mode 1 eigenvalues
exhibit similarity scaling for x/D > 50.

The scaled w-component mode 1 eigenvalues are shown in figure 27. This figure
also shows evidence of self-similar behaviour for λ̃(1)

w . However, unlike the u- and
v-components, significant differences in the eigenvalue profiles remain apparent at
x/D = 50 and 60. These data suggest that self-similar behaviour for the w-component
eigenvalues occurs only for x/D > 60.

Although not presented here, the scaled eigenvalues associated with higher u-,
v-, and w-component modes were also found to exhibit a collapse similar to that docu-
mented for mode 1. The reader is referred to Gordeyev (1999) for a full presentation
of these results.

In order to assess the self-similarity of the scaled POD eigenmodes, cross-stream
profiles at each streamwise location may be compared for given values of St and
kzb/2π. Such comparisons were made for numerous combinations of St and kz and a
sample of representative results is presented here. Figure 28 presents |φ(1)

u (y/b; St, kz =
0, x/D)|2 and |φ(2)

u (y/b; St, kz = 0, x/D)|2 for St = 0.05, 0.1 and 50 6 x/D 6 90. These
results illustrate the self-similarity in cross-stream u-component eigenmode shape that
was found to characterize the other combinations as well.

Figure 29 presents similar results for the v-component eigenmode profiles. Again
the comparison is shown for the planar mode, kz = 0, with St = 0.05, 0.1. The
self-similarity in v eigenmode profile shape is again readily apparent.

Although not presented here, the scaled w-component eigenmode cross-stream
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Figure 29. Scaled eigenfunctions |φ(n)
v (y/b, St, kz = 0; x/D)|2, n = 1, 2 for the v-mode.

profiles were also found to exhibit similarity scaling (except at x/D = 50, 60 as noted
previously).

3.5. POD results from the single-rake experiment

As noted earlier, we consider the two-rake implementation of the POD the primary
experiment and the more proper way of exploring the structure of the planar jet. This
method provides eigenmodes and eigenvalues that exhibit an explicit dependence on
spanwise wavenumber, kz . However, a single-rake implementation of the POD was
also performed in support of the primary experiment as described in § 2.3. This was
motivated by the fact that previous investigations in the planar jet have utilized
two-point correlations confined to a single (x, y)-plane. In addition, the single-rake
implementation allows a larger number of probes to be placed in the inhomogeneous
direction and thereby enables eigenmode resolution issues to be addressed.

In this section the single-rake POD modes ψ(n)
α (y/b; St) with corresponding eigen-

values µ(n)
α (St) as computed from (2.28) for the diagonal terms Sαα are presented and

compared to results from the two-rake experiment. Note that in the single-rake exper-
iment the resulting eigenfunctions are not explicit functions of spanwise wavenumber
kz but depend only on Strouhal number, St, and the inhomogeneous spatial coordi-
nate y. Since the one-rake experiment does not resolve the spanwise direction, the
resulting POD modes will represent a weighted sum of the two-rake POD modes
previously presented.

Figure 30(a) presents |ψ(1)
u (y; St)|2 and |ψ(2)

u (y; St)|2 obtained at x/D = 70. The as-
sociated eigenvalues µ(1)

u (St) and µ(2)
u (St) are presented in figure 30(b). A cross-stream

asymmetry in both eigenmodes is apparent from figure 30(a). Note, in particular,
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u (St; x/D), n = 1, 2 at x/D = 70.

that values of |ψ(1)
u |2 are greater for −y than for +y. The opposite is true for |ψ(2)

u |2.
Recall from the two-rake POD results that the first two u-component eigenmodes
also exhibited an identical cross-stream asymmetry for non-zero spanwise wavenum-
bers. This may be seen by comparing figure 30(a) with figures 21(b–d) and 22(b–d).
Since the single-rake results presented here represent a weighted sum over all span-
wise wavenumbers, the cross-stream asymmetry is an expected consequence of the
contribution of the non-zero kz modes. Similarly comparison of figure 30(a) with
figures 21(b) and 22(b) clearly demonstrate that single-rake measurements do not prop-
erly capture planar modes. Figure 30(b) shows that the peak eigenvalues µ(1)

u and µ(2)
u

occur at St = 0.04 and St = 0.03, respectively. These values are quite similar to those
obtained in the two-rake experiment.

The v-component eigenmodes |ψ(1)
v (y, St)|2 and |ψ(2)

v (y, St)|2 are presented in figure
31(a) and both are observed to be symmetric in y. This is expected since the first
(as shown in figure 23) and second POD modes from the two-rake experiment are
also both symmetric in y. Note, however, that there are differences in the mode
shapes between the two experiments. For example figure 31(a) shows the |ψ(1)

v (y, St)|2
mode shape to exhibit a broader peak near the jet centreline than is shown in figure
23(b). This difference is most likely due to the contribution of non-zero spanwise
wavenumber modes. Figure 31(b) shows that peak eigenvalues µ(1)

v and µ(2)
v occur at

St = 0.09 and St = 0.07, respectively.

4. Discussion
The energy content of the POD modes as expressed through their respective

eigenvalues show rapid convergence with mode number. The v-component POD
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v (y, St; x/D) with (b) the corresponding

eigenvalues µ(n)
v (St; x/D), n = 1, 2 at x/D = 70.

mode converges particularly rapidly with 61% of the large-scale v-fluctuation energy
contained in mode 1 while the first three modes capture nearly 90%. The energy
convergence of the u- and w-component modes is less rapid but still the first four
modes each contain 85% and 80% of their respective large-scale fluctuation energy.
These results are encouraging and suggest the potential for using the experimentally
obtained POD modes in conjunction with Galerkin projection as the basis for ob-
taining a dynamical-system-based model of the coherent structure dynamics in the
self-similar region of the turbulent planar jet. Of course there still exists energy trans-
fer from the large resolved modes to small unresolved dissipative scales that must be
accounted for. This interaction can be parametrically described by a model like the
Heisenberg spectral model for isotropic turbulence (see Aubry et al. 1988).

Consistent with the theoretical predictions of Ewing (1995) which show that the
correlation tensor admits self-similar solutions, the scaled POD eigenvalues and
eigenmodes in the turbulent planar jet are shown to exhibit strong evidence of self-
similarity. In particular, suitably scaled u-, v- and w-component POD modes and
eigenvalues exhibit self-similar behaviour by x/D = 60, 50 and 70, respectively. Recall
that measured second-order turbulence moments were observed to be self-similar for
x/D > 50. The self-similarity of the POD modes is a sufficient condition to indicate
that the average coherent structure in the turbulent planar jet scales in accord with
the requirements for global flow field similarity. The self-similar behaviour of the
POD modes is also consistent with previous observations which show that integral
spatial macroscales obtained in the similarity region of the jet are proportional to the
local mean velocity half-width.

The inability to perform direct measurements of the velocity cross-correlation
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matrix for cases involving streamwise probe separations (due to probe wake interfer-
ence) makes analysis of the streamwise coordinate problematic. Almost all existing
approaches to the experimental investigation of jet dynamics are based on the assump-
tion that the flow is homogeneous in the streamwise direction (i.e. the flow is assumed
to be locally parallel). This assumption requires the use of Taylor’s hypothesis and
the streamwise evolution is then approximated through the local temporal evolution
which is much easier to obtain experimentally. Physically this is equivalent to impos-
ing wall-like boundary conditions on the jet which prevent it from spreading. Locally
this approximation seems reasonable since in the self-similar region the spreading rate
of the jet db/dx ≈ 0.1. One then expects this approximation to be locally dynamically
similar to the real flow. While it may be suitable for examination of local dynamics,
it is certainly not appropriate for dealing with the global dynamics of the jet. The
question then arises as to whether the observed self-similar behaviour of the POD
eigenmodes and eigenvalues may be exploited to provide an alternative approach
to handling the streamwise coordinate. It is well known that self-similar behaviour
in fluid mechanics considerably simplifies flow field modelling. Since the results of
this paper indicate that the large-scale jet dynamics is self-similar, this suggests the
possibility that the governing equations can be rewritten in self-similar coordinates
whereupon the streamwise direction will become truly homogeneous. Unfortunately
when this is done, time then becomes an inhomogeneous coordinate. Consequently,
there does not appear to be a clear advantage of one approach over the other and
the problem of how to properly deal with the inhomogeneous streamwise coordinate
in modelling the flow remains open.

Even without a full dynamic reconstruction of the flow field structures in physical
space, several characteristics regarding the time-averaged structure in the turbulent
planar jet may be gleaned from examination of the POD modes presented in this pa-
per. The results from the two-rake experiment indicate that the self-similar large-scale
structure in the planar jet is three-dimensional in nature. However, it is natural, given
the geometry of the flow field, to question whether some portion of this underlying
structure can be approximated as planar. From the results presented here the answer
seems to be yes. The results suggest that the flow supports a planar structure aligned
in the spanwise direction (kz = 0) as well as an essentially three-dimensional structure
with asymmetrical shape in the y-direction and pseudo-periodically distributed in
the spanwise direction. In particular, modal eigenvalue distributions in (kz, St)-space
indicate that a substantial fraction of the energy associated with the u-component
POD modes and nearly all the energy associated with the v-component POD modes
are due to an essentially planar component of the large-scale structure that extends in
the spanwise direction. That is, most of the u- and v-component energy is associated
with kz = 0 and falls off quite rapidly for kz > 0. The eigenvalues also exhibit a
well defined peak in St with tails extending to somewhat higher values of St. This
suggests that the planar structure is nearly periodic and may also exhibit an intermit-
tent behaviour. This planar structure is reminiscent of the ‘spanwise roller’ structures
noted by Mumford (1982) using a pattern recognition method. Measurements of
Φuv indicate that large-scale Reynolds stress u′v′ is governed largely by this planar
component of the flow structure.

As noted earlier, the implementation of the POD presented in this paper is based on
the diagonal elements of the cross-spectral matrix and neglects information contained
in the off-diagonal terms. This was done in order to examine the self-similarity of the
POD modes without implementing a Taylor’s frozen field approximation in order to
obtain the required Φvw term for the solution of (2.7). However, for the planar mode
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Figure 32. The planar u, v-mode at x/D = 70: (a) Eigenvalue λ(1)
uv (St; kz), (b) u-eigenmode
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(y, St = 0.09, kz = 0, x/D)|2 for several x/D (symbols) and the linear instability u-mode (solid
line), (e) Normalized v-modes |φ(1)

v (y, St = 0.09, kz = 0, x/D)|2 for several x/D (symbols) and the
linear instability v-mode (solid line). For meaning of symbols see figure 28.

w′ = 0 and therefore this mode can be restored from (2.7), with α, β = u, v only. Thus,
the planar POD mode is based upon Φuu, Φvv and the off-diagonal term Φuv . The
resulting first POD eigenmode φ(1)

α (y, St, kz = 0), α = u, v and associated eigenvalue
λ(1)
uv (St, kz) are presented in figure 32. Note that now the eigenvalue is the same for
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both the u- and v-component POD modes. Recall that the diagonal elements Φuu
and Φvv are dominant with respect to Φuv . Therefore, the POD modes obtained from
solution of (2.7) shown in figures 32(b) and 32(c) compare quite favourably with those
shown in figures 21 and 23 which result from the diagonal terms only (3.2). Note that
the combined eigenvalue λ(1)

uv shown in figure 32(a) peaks at St = 0.09 while λ(1)
u and

λ(1)
v peak at St = 0.05 and St = 0.1, respectively. It is interesting to note that the peak

Strouhal number for the planar mode compares quite well with the Strouhal number
corresponding to the jet ‘flapping frequency’ (1.1) reported in earlier studies of the
planar jet.

The inviscid linear stability of the mean flow profile of figure 2(a) for spatially
growing disturbances was examined by solution of the Rayleigh equation. This
profile admits two modes of instability: a symmetric mode with respect to the jet
centreline (i.e. symmetric in u′, antisymmetric in v′) and an antisymmetric mode
(antisymmetric in u′, symmetric in v′). Comparison of spatial growth rates indicates
that the antisymmetric mode should dominate. The eigenvalue analysis gives St = 0.06
for the most unstable antisymmetric mode. The cross-stream variation of the squared
modulus of the u- and v-eigenmodes obtained from the solution of the Rayleigh
equation (for the most unstable antisymmetric mode) is compared with the first u-
and v-component planar POD modes in figures 32(d) and 32(e). The eigenmodes
represent the cross-stream variation of the spatially most unstable mode obtained
under the assumption of a small linear perturbation of the parallel mean flow. In
contrast, the POD modes represent the cross-stream shape of the dominant planar
structures in the turbulent jet. In order to facilitate comparison of their shapes both
have been normalized by their respective cross-stream spatial integrals. It is apparent
from figure 32(d, e) that the eigenmodes resulting from the stability analysis bear a
clear resemblance to the cross-stream shape of the first u- and v-component planar
POD modes. This provides some evidence (although not proof) that the origin of
the planar mode may lie in the local stability of the mean flow. This suggests a
mechanism in which fluctuation energy is continuously provided at the appropriate
local bandwidth for the sustenance of the coherent structure. This combined with
the nearly inviscid nature of the largest scales of motion may explain the constant
relative energy of the POD eigenmodes with streamwise distance.

The POD results also indicate an essentially three-dimensional component of the
flow structure. This is apparent from examination of the changing character of the
cross-stream u- and w-component POD mode shapes with increased kz . The eigenvalue
distributions for the u- and w-component modes both show significant energy content
for kz > 0. In each case, however, the modal amplitudes are very small for kzb/2π > 1.
This suggests a lower limit for the spanwise extent of the structure as Lz > b. That is,
for the three-dimensional part of the structure, its minimum local spatial extent in the
spanwise direction is of order b. Spanwise large-scale fluctuations appear associated
with this three-dimensional structure. That there is significant u′w′ coupling in the jet
indicates that large-scale three-dimensional structures are responsible, in part, for the
streamwise fluctuations.

The observations reported here regarding the character of the time-averaged struc-
ture in the turbulent planar jet are reminiscent of those reported by Mumford (1982)
who suggested the presence of two kinds of vortical structures in the flow. One type,
a planar spanwise oriented roller seems to correspond to the planar mode observed
in this study. A secondary structure involved streamwise vortices aligned with local
mean strain rate. This is probably associated with the three-dimensional portion of
the POD structure which is associated with u′w′ correlation.
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Comparison of the single- and dual-rake implementations of the POD presented
in this paper demonstrate that measurements confined to a single (x, y)-plane are
incapable of properly extracting the planar modes. Rather, the single-rake implemen-
tation results in modes that appear to be a weighted sum of modes corresponding to
different spanwise wavenumbers. In effect POD measurements in a single (x, y)-plane
exhibit aliasing from non-zero kz modes. This result can be generalized to indicate
that previous published measurements in the planar jet that are confined to a single
(x, y)-plane are not truly representative of planar structure but must result from a
superposition of multiple spanwise wavenumber modes.

More detailed information regarding the coherent structure topology and its dy-
namic behaviour requires its restoration in physical space and an implementation of
the POD that utilizes the full cross-spectral tensor Φαβ . We will approach this task
by a combination of the POD, the continuous wavelet transform and a triple-x-wire
rake arrangement. This is the topic to which we turn our attention in Part 2.

The authors would like to acknowledge the electronics expertise of Joel Preston
which proved invaluable in the fabrication of the multi-channel anemometry system
used for this research.
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